
Page 1

Technical Report
Sakai Project

Sakai Java Framework

October 24, 2004
Version 1.0

Craig Counterman
Glenn Golden
Rachel Gollub
Mark Norton

Charles Severance
Lance Speelmon

www.sakaiproject.org

Page 2

1 Introduction

This document describes the Sakai Java Framework that is one possible implementation of the Sakai Abstract
Architecture. This document describes particular technologies chosen for the layers identified in the Sakai
Architecture that leads to the Sakai Tool Portability Profile. The Tool Portability Profile (TPP) is more detailed
guidance with respect to the development of tools that will operate within the Sakai Java Framework.

It is important to note that this document is only intended to reflect the best thinking and information for a
particular release of Sakai. The version of this document (see title page) is tied to a particular Sakai release. These
documents should be expected to change in some possibly significant ways during the early Sakai releases. Because
the early phases of the Sakai project are using legacy capabilities coming from the CHEF environment, development
and tool deployment will be a mix of legacy and new Sakai capabilities throughout through Sakai 3.0 (late 2005). In
each successive release, the focus will increasingly be on the non-legacy aspects of Sakai.

Until version 2.0 the Sakai Java Framework is in a state of flux. Releases prior to 2.0 are intended to provide
functionality that can be installed and used to provide a collaborative and learning environment. However, the
official 1.0 and 1.5 releases should not be used as the basis for significant development. Not all the elements of the
framework will be present in the official releases because they may not be production ready. Those wanting to work
with the framework and build new tools should use the CVS archive rather than the source code provided by the
releases so as to work the most up-to-date code supporting new framework capabilities.

Users adopting early releases of Sakai should be prepared to track Sakai evolution through the public mailing lists
and the Sakai Educational Partners Program described at www.sakaiproject.org.

1.1 Purpose of this Document

This document describes a design based on the Abstract Sakai Architecture for a Java-based framework that allows
tools and services to leverage the powerful support provided by existing web technologies. In particular, it describes
a suite of technologies that allow Sakai Services and Tools to be created in a manner that promotes interoperability
and code portability.

1.2 Definition of Terms and Acronyms

OKI, Open Knowledge Initiative
OSID, Open Service Interface Definition
OBA, Out of Band Agreement
JSF, JavaServer Faces
JSP, JavaServer Pages
Servlets
Portlets
Web Application
JISC, Joint Information Service Committees
IMS, The IMS Global Learning Consortium
IEEE, The Institute of Electrical and Electronic Engineers
OSPI, Open Source Portfolio Initiative

Page 3

1.3 Intended Audience

The Sakai Tool Portability Profile is intended for people interested in understanding how Sakai is implemented and
deployed in a Java environment. It refines the Sakai architecture by providing an example of how that architecture
be realized using existing, standard Java technologies.

Page 4

2 The Sakai Java Framework

The Sakai Java Framework is a particular implementation of the Abstract Sakai Environment focused on support for
Sakai TPP tools written in Java operating in a web-browser environment. Many other frameworks can be built to
support Sakai TPP applications and different design decisions might be made as those frameworks are developed.

The ultimate goals of the Sakai Tool Portability Profile and the Sakai Java Framework is to provide an environment
where tools and the services to support those tools can be dropped in as "units of expansion" or "building blocks" as
to allow an organization to assemble the componentized units of functionality together to solve their particular
application problem.

T
h

e
 S

ak
a i

 F
ra

m
ew

o
r k

Sakai
Service

Sakai
Service

Sakai
Service

Sakai
Service

Sakai
TPP Tool

Sakai
TPP Tool

Sakai
TPP Tool

The Sakai Java Framework can be thought of as a suitable "container" for Sakai TPP tools and associated services.

In addition to supporting Sakai TPP tools, the framework also supports a number of other "real-world" capabilities
such as portal integration, non-TPP application integration, and others. Both the Sakai TPP environment and these
real-world considerations are described in this document.

There are a number of different approaches to integrating application functionality into the Sakai Java Framework.

• The Sakai TPP Tools and Services are an approach to building units of extension for Sakai that are well
coordinated with the other Sakai Tools. The Sakai TTP environment provides a specific set of JSF widgets
to insure consistency between these tools.

• For existing tools written in Java, or tools that must operate both within Sakai and outside of Sakai, there is
a simpler form of Servlet integration where an application can access the Sakai APIS without completely
converting to be a Sakai TPP tool.

• The framework provides a "wrapper" to allow CHEF tools to be placed into the environment with only
minor modifications. The Sakai environment provides services to these tools as a complete replacement to
the Jetspeed portal that was used by CHEF.

• While the 1.0 release does not include provisions for integration using web services, into non-java
languages such as PHP, the general direction in this area is described.

The rest of this section describes these approaches to integrating application functionality into the Sakai framework.

2.1 Extending Sakai Using the Sakai Tool Portability Profile

The goal of the Sakai Tool Portability Profile (TPP) is to define the interaction between a Sakai TPP Tool and the
Sakai Framework. A Sakai TPP Tool is a well-formed unit of functionality (similar to a plug-in), which can be
dropped into a Sakai Framework along with many other Sakai Tools to provide the overall application functionality

Page 5

with a consistent look and feel between tools. Sakai TPP Tools are by their nature more restrictive than general Java
Applications described in the next section - particularly because presentation aspects are constrained in a Sakai TPP
tool to use the presentation support provided by the framework.

Aggregator

Presentation

Tools

Services

Client

System

T
he

 A
bs

tr
ac

t S
ak

ai
 E

nv
iro

nm
en

t

T
h

e
S

ak
a

i F
r a

m
e

w
o r

k

Internal
Aggregator

Tool
Presentation

Tool Code

Application
Services

Framework
Services

Presentation
Support

T
h

e
S

ak
a

i T
o o

l E
n

vi
r o

n m
en

t

External
Aggregator

System

A key element of the Sakai TPP contract is that it completely specifies all of the interactions that a tool will make
including the interfaces to a presentation layer, Application Services, and framework services. The Sakai TPP forms
a complete "perimeter" around a tool so that it truly can be "dropped" into any environment that complies with the
Sakai TPP. It is important to note that the definition of the Sakai TPP is evolving throughout the Sakai project and
that we expect it to be quite solid by the Sakai 2.0 release.

Within the Sakai TPP tool environment, tools are broken into three basic layers: (1) Presentation logic, (2) Tool
logic, and (3) Application Services. The framework provides a set of services that can be used either by the tools or
Application Services to interact with the framework as necessary. The presentation of the tool is broken into two
layers. Within the tool, there is an "abstract" expression of what the GUI should look like. The rendering of the
GUI is up to the framework. This paves the way for support for many presentation elements without the need to
change the presentation layout in the tool.

The following identifies some sample technologies for each of the abstract elements of the tool and framework
environments in the Sakai Java Framework.

Page 6

T
h

e
S

ak
a

i F
r a

m
e

w
o r

k

I-Frame Based
Aggregator

GUI layout
(JSF/JSP)

Schedule
Tool (Java)

Schedule
API (Java)

OSID Agent
API

Sakai JSF
Widget Set

T
h

e
S

a k
a

i T
oo

l E
n

vi
r o

nm
e n

t

uPortal via
WSRP

System

Within the tool environment, tool code is written in Java performing the necessary tool logic, and interacting with
the presentation layer using JavaBeans. The presentation is expressed in JavaServer Faces that expresses the
presentation elements using the Sakai GUI Components in the Sakai Widget Set.

Each tool will typically have one or more APIs that provide direct support for the tool when interacting with the
system and framework APIs. These tool-facing APIs are designed to provide tool writers a convenient and easy-to-
use interface. Often these APIs evolve as tool needs and requirements evolve. It is an important design pattern to
move as much functionality as possible from the tool logic to the Application API to maximize the opportunity for
the reuse of that functionality. It is also important to note that while many of the tool-facing APIs will be used
primarily by one tool, there are many examples where the APIs will be used by many tools. A good example of this
would be where a grade book tool would be the primary user of the grade book API but an assessment engine that
needed to record grades from assessments would also use the grade book API.

As mentioned above, by separating the presentation into two layers where one layer is within the tool and the other
layer is in the framework, Sakai tools can be repurposed to support multiple presentation approaches as shown
below.

Page 7

T
h

e
 S

a
k a

i F
r a

m
ew

o
rk

Servlet/HTML
Renderer

Java Server
Faces in JSP

Java Tool Logic
Java Beans

Sakai Application
Services

Sakai JSF
Widget Set

T
h

e
 S

a
ka

i T
o

ol
 E

n
vi

r o
n m

e n
t

Portals via
iFrame

Sakai/OKI
APIs

Sakai
Stand-Alone

JSR-168
Renderer

WSRP
Renderer

uPortal via
JSR-168

uPortal via
WSRP

?????
Renderer

????? via
????

The goal of having the presentation express its GUI in a relatively restricted subset of JavaServer Faces is to allow
for a multitude of ultimate presentation capabilities all handled transparently within the framework.

The above diagram can be thought of as a rough roadmap for Sakai presentation efforts. The initial versions of the
framework will support the stand-alone aggregation and I-Frame integration within portals. Work is ongoing to
evaluate and integrate WSRP as a rendering option and once WSRP has been evaluated, JSR-168 will be worked on
as well. Beyond WSRP and JSR-168 there has been talk of a Swing-based renderer or even a Flash based renderer.

The essence of the Sakai TPP is to define how to build and deploy tools. It is naturally a constraining environment
that is designed to maximize portability of the Sakai tools. Some may feel that it is too constraining and may choose
to develop and integrate applications into Sakai that use mechanisms other than TPP compliance.

2.2 Integrating Applications into Sakai

There are many cases where the Sakai TPP is not an appropriate approach to integrating functionality into Sakai
including:

• An application that needs to operate both within Sakai and independent of Sakai

• A large application using presentation technology other than JSF, or is using JSF in ways which are not
supported in the Sakai TPP.

Sakai provides a method to integrate these applications into Sakai without requiring the rewrite of the presentation
aspects of the tools. Tools that are integrated in this way have full access to the Sakai Framework and Application
APIs.

With the proper code structure, it can be quite natural to maintain both a Sakai and stand-alone version of a tool.

Page 8

The primary problem which must be solved when bring a Servlet into Sakai is the necessary setup to insure that the
Sakai APIs have access to information stored in the Servlet thread. Once the Servlet thread is properly set-up, the
Java application can simply make calls to the Sakai APIs using the service location or cover patterns to locate the
proper implementations for the Sakai APIs (see later section describing service location).

This necessary initialization has been placed in a Servlet filter that does the necessary thread local work to initialize
the Sakai APIs within the web application for each incoming request. Because this is done with a Servlet filter,
there is no need to modify the application - the change is to add a filter entry to the web.xml for the Servlet.

T
h

e
 S

a
k a

i F
r a

m
ew

o
rk

I-Frame Based
Aggregator

Java Server
Faces in JSP

Java Tool Logic
Java Beans

Sakai Application
Services

Sakai JSF
Widget Set

T
h

e
S

a
ka

i T
o

o l
 E

n
v i

ro
nm

e n
t

uPortal via
iFrame

Sakai/OKI
APIs

Sakai
Stand-Alone

Java Tool Logic

Application
Services N

o n
- S

a k
a

i W
e

b
A

p
p l

ic
at

io
n

Presentation

S
a

ka
i A

P
I G

a t
e

w
a

y

Sakai WebApp
 Gateway

Given that the presentation elements are "within" the tool, the application is completely responsible for its look and
feel and any compliance to the Sakai Style Guide, conformance with accessibility rules, and other presentation
elements which a Sakai TPP tool delegates to the framework.

Often the application needs to maintain both a "stand-alone" version and a version that works within Sakai. A
useful design pattern to solve this problem is for the application to decompose its internal functionality into a set of
"providers" which can be plugged into their application services.

Page 9

Java Tool Logic

Presentation

AUTHN
Provider

AUTHZ
Provider

Group
Provider

Storage

Group
Provider

Application
Services

Java Tool Logic

Presentation

Sakai API Gateway

Sakai WebApp Gateway

AUTHN
Provider

AUTHZ
Provider

Group
Provider

Storage

Group
Provider

Application
Services

Group
Provider

Group
ProviderWeb Application Container (Tomcat)

Stand Alone Operation Operating Within Sakai

When the application is operating as a stand-alone web application, it uses one set of providers for those services
that simply stores the appropriate data in the application's local storage. When the application is moved into Sakai it
is configured to use a different set of providers for those internal interfaces which make calls to the Sakai services as
appropriate.

This way any Sakai-specific code is isolated into these providers rather than being sprinkled throughout the
application services and tool logic.

2.3 Sakai Legacy Tools

The baseline functionality of the Sakai Collaborative and Learning Environment (CLE) in the Sakai 1.0 release is
provided by a number of legacy tools that are evolved from the CHEF tools in the 1.12 release of CHEF. These
tools were originally written to operate in the Jetspeed portal and used the Velocity template engine. These tools
were brought into Sakai by producing a layer that provided basic implementations of needed Velocity and Jetspeed
APIs but which interacted with the Sakai framework rather than Jetspeed.

To ease the porting of these tools, a legacy framework and set of services was developed and is supported within
Sakai in addition to the TPP compliant tools. These two frameworks operate together in the same environment. The
aggregator can display Sakai legacy tools and Sakai TPP tools at the same time.

In addition, the framework and application services are usable across both the legacy and non-legacy environments.
This allows an evolutionary approach to tool and service development. The legacy services are quite complete in
version 1.0 while the new-generation of Sakai APIs and OKI OSIDs will be developed and used in parallel with the
legacy capabilities in Sakai version 2.0 and beyond.

Page 10

T
h

e
S

ak
a

i F
ra

m
e

w
o r

k

I-Frame Based
Aggregator

Java Server
Faces in JSP

Java Tool Logic
Java Beans

Sakai Application
Services

Hibernate

Sakai JSF
Widget Set

T
h

e
S

a k
a

i T
oo

l E
n

v i
r o

nm
e n

t

uPortal via
iFrame

Velocity
Templates

Sakai Legacy
Tools

Sakai Legacy
Services

Sakai
Framework APIs

Sakai Velocity
Support Layer

T
h e

 S
ak

ai
 L

eg
ac

y
E

n v
i ro

nm
e n

t

Sakai
Stand-Alone

OKI OSIDs

OKI OSID
Legacy Covers

The Sakai legacy environment does not include the Jetspeed portal - the Sakai legacy environment was created by
producing a set of proxy implementations for much of the Jetspeed APIs needed by the legacy tools. These Jetspeed
APIs are implemented so as to talk to the Sakai Framework.

During development of new tools and capabilities there may be a need to use a combination of Sakai legacy
framework capabilities and the new Sakai APIs to accomplish the needed tasks. One approach to bridge this gap is
to develop a set of OKI OSID interface implementations that cover the legacy APIs - this allows newly developed
tools to use the OKI OSIDs to access and interoperate with the legacy services.

2.4 Integrating Non-Java Applications into Sakai

While this document is describing the Sakai Java Framework, it is appropriate to discuss how applications which are
written in a language such as PHP, Perl, or C# will be integrated into Sakai. Since the Sakai APIs are only
available to applications in Java, a web-services gateway must be provided to allow these applications to make use
of the Sakai APIs.

In addition there must be a way for the output of non-Java applications to be aggregated together with the output of
the Sakai tools. There are two approaches under consideration to solving this problem of aggregating across Java
and non-Java applications: (1) I-Frame integration or (2) WSRP integration. In both situations, there will be a need
for an analogue to the Sakai Web Application gateway that passes critical set-up information regarding session
context using either request parameters or in optional fields in the WSRP information. This information will then be
used when making web-services calls back to Sakai to access information such as identity, authorization, or group
membership.

An approach that is being discussed is to use a blend of i-Frame and Web-Services to integrate truly external tools
that are running on their own web server and running in any language. The following diagram describes the
interaction:

Page 11

JVM

T
h

e
S

a k
a i

 F
ra

m
e

w
o r

k

Sakai Services

E
x t

er
na

l
W

e
b

A
pp

l ic
at

i o
n

Sakai
Launch Control

Session
And Services

Bootstrap

Sakai Web
Services Gateway

Application
Code

1

2

3
4

5
6

7

There are a number of steps in the process between the point when the user launches the tool and when the tool
interaction is complete.

1. First the user selects the tool by pressing a button.
2. The Sakai launch control intercepts the incoming request and contacts the external application via web

services. Launch control communicates the user identity, session information, contextual information, and
a web-services handle to get back to the Sakai web service gateway.

3. The external web application sets up any session information for the use, records any necessary information
about the user and the web services handle.

4. The external application returns a contact URL back to Sakai launch control that sends it to the user's
browser in an iFrame.

5. The Sakai launch control launches the application's starting URL in an iFrame
6. The user then interacts with the application within the iFrame using http.
7. When the application needs access to information such as user roles, user information, or other information,

Web-Services are used to retrieve this information from Sakai.

While this shows an outline and approach, there is still a great deal of engineering that must be invested to fully
define this approach. We will need to develop specifications for the web-services (WSDL) for the interaction
between the launch and the external application, and the interaction between the application and the Sakai web
services gateway.

This is only one possible approach to this problem. As requirements are identified and prioritized this and/or other
approaches may be designed, evaluated, scheduled and implemented.

Page 12

3 Inside a Sakai TPP Tool

This section includes a very short summary of how the presentation works within a Sakai tool. For more detail you
should look at the Sakai Tool Development Guide.

This section describes how the presentation is separated from the tool logic within the Sakai TPP Tool environment.

T
he

 S
ak

a i
 F

r a
m

e w
or

k
Sakai Tool

Presentation

Sakai
Tool Code

Application
Services

Presentation
Support

T
h e

 S
a k

ai
 T

oo
l E

n v
i ro

nm
en

t

The GUI layout is described in a restricted variant of JavaServer Faces using a set of Sakai-provided UI
Components. The interface is limited to the Sakai provided components to allow future flexibility in rendering for
environments beyond HTML such as WSRP, JSR-168, Swing, or even Flash.

An additional, very important aspect of the Sakai UI Components is to provide for the ability to render the Sakai
interface in a number of accessible formats. The Sakai Presentation Support will be informed by the user’s
accessibility profile and transparently render the Sakai UI components appropriately based on the user's profile. By
delegating this to the Sakai Presentation Support we can insure that all Sakai TPP compliant tools are uniformly
accessible without placing accessibility oriented code separately into every tool.

The following Sakai GUI Elements are initially defined:

• ButtonBar
• ButtonBarItem
• Comment
• DateInput
• DateOutput
• DocProperties
• DocSection
• DocSectionTitle
• FlatList
• GroupBox
• InstructionMessage
• PanelEdit
• Toolbar
• ToolbarItem
• ToolbarMessage
• ToolbarSpacer
• ViewContainer
• ViewContent

Page 13

As tools are developed and additional needs are identified the UI Component set will be expanded.

These UI components are assembled together in a JSP description of the interface layout.

<sakai:view_container title="#{msgs.sample_title}">

<sakai:tool_bar> <sakai:tool_bar_item/> </sakai:tool_bar>

<sakai:instruction_message
value="#{msgs.sample_one_instructions}" />

<sakai:group_box
title="#{msgs.sample_one_groupbox}">

<h:inputText
value="#{MyTool.userName}" />

<sakai:date_input
value="#{MyTool.date}" />

<sakai:button_bar>
<sakai:button_bar_item
action="#{MyTool.processActionDoIt}
value="#{msgs.sample_one_cmd_go}" />
</sakai:button_bar>

The values that are used to populate the UI Components come from JavaBeans that are associated with the tool
session.

For areas of the user interface where there is some action to be taken, the GUI layout specifies methods to be called
in the Tool Java code when a particular action is indicated. In the example below the processActionDoIt is a
JavaBean method which is called when the "Continue" button is pressed.

<h:inputText
value="#{MyTool.userName}" />

<sakai:date_input
value="#{MyTool.date}" />

<sakai:button_bar>
<sakai:button_bar_item
action="#{MyTool.processActionDoIt}
value="#{msgs.sample_one_cmd_go}" />
</sakai:button_bar>

MyTool.userName() {
}

MyTool.date() {
}

MyTool.processActionDoIt() {
}

In the 1.0 release of Sakai, the Sakai Widget set is known to be incomplete and will need to be evolved as part of the
later Sakai releases. The pattern of using the widgets to present GUI elements requires new widgets to be developed

Page 14

to support new capabilities. While many developers are used to doing this more directly in the tools, taking the
approach of extending the widgets insures consistency between tools and insures that accessibility can be addressed
within the widgets rather than being spread out into the tools.

Part of the engineering process of Sakai between versions 1.0 and 2.0 is to improve and extend the Sakai GUI
widget set.

Page 15

4 Understanding the Sakai APIs

Application Programming Interfaces (APIs) and the services that implement those interfaces are a critical part of the
Sakai TPP. Often the term "services" is used to describe many different kinds of API implementations. In this
section we look at several different categories of APIs that are used within Sakai to help guide you as you look
through the Sakai Source code.

The first critical set of APIs are the "Application Services" - these are APIs which often initially created as part of
the development of a tool. As an example, the calendar tool will likely use a calendar API heavily and the calendar
tool will likely drive the feature set of the calendar API. However it is important to note that other tools may need to
use the Application APIs. As an example, an assignment tool may need to access the calendar API when it needs to
place an assignment due-date on the calendar.

These Application Services will likely have an interface that is specifically designed for maximal tool convenience.
Generally the trend is to move functionality out of tools and into Application Services to maximize the possibility of
reuse of the code. As such the application service APIs will generally expand over time as new tool requirements
are identified and need support in the application service API.

These Application Services are best thought of as being part of the tool environment and as such, should be written
with portability in mind and depend on the framework to help maintain that portability.

T
h

e
S

a k
a

i F
ra

m
e

w
or

k

Java Server
Faces in JSP

Java Tool Logic
Java Beans

Sakai Application
Service

T
h

e
S

a k
a

i T
oo

l E
nv

ir o
nm

e n
t

Sakai Legacy
Framework Service

Sakai Legacy
Application Service

Sakai Application
Service

OKI OSID
Common Services

Sakai Common and
Framework Services

There are different ways to group services within the framework. The Sakai Common and Framework services
provide APIs to interact with the entire framework and to provide portable ways to access critical framework
information.

There is a set of Sakai Legacy services, both at the framework and application service level. Because much of the
end-user functionality in Sakai 1.0 is delivered using legacy tools, the Legacy services must work with the new and
evolving OKI OSIDs and the new Sakai Common and Framework services. This compatibility will be maintained
using a number of techniques including: (1) implementing a new interface as a cover of an old interface, (2)
implementing the old interface as a cover of a new interface, or (3) rewriting legacy tool code to use the newer
interfaces.

Page 16

These approaches will be used to provide a seamless transition for developers from the 1.0 release to the 2.0 release.
The legacy capabilities will be maintained as interoperable with the new capabilities well beyond the 2.0 releases.

Page 17

5 Founding Principles of the Sakai Java Framework

The Sakai Java Framework operates in a Tomcat web server environment. However Sakai takes over the entire
Tomcat instance and uses the Servlet web application capabilities as a unit of extension within the Sakai framework.
This is a departure from the classic web application paradigm.

Tomcat

shared/lib - jarsspring component framework

component
webapp

tool
webapp

framework
webapp

tool
webapp

aggregator
webapp

shared interfaces and core object definitions

…

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

This is a significant departure from the classic use of a Servlet container and is done for several very important
reasons:

• In a JSR-168 portal environment such as Pluto (from Jakarta) each Portlet is also a web application
(Servlet) so that Portlets can take advantage of the Servlet API capabilities.

• As multiple development efforts begin to be integrated into a Sakai environment, having a single location
for jars becomes an intractable problem. By isolating major units of functionality into separate web
applications the needed jars can be kept separate from the other components and tools. Earlier
CHEF/Jetspeed experience with integration lead to the conclusion that after about four major applications
being integrated, that the WEB-INF/lib was so polluted that it was difficult to keep the system reliable.
The biggest problem is that different projects operate at different paces and the task of merging the jars of a
two-year-old project with those of a very up-to-date project become nearly impossible and causes a
reliability nightmare.

Having tool, implementation, and portal functionality placed into separate web applications allows a far superior
model of extension and fits well with the JSR-168 and Portlet needs. However, there are several technical
challenges that come from separating the overall application into separate web applications:

• When tool or service in one web application can call a service implementation where the code is operating
in another web application. This requires that the service interfaces and the objects returned by the service
APIs are placed in Tomcat's shared/lib area. There must be a way to "find" the implementation using
service location or service injection (described below). Sakai has a cross-web-application component
manager that is based on Spring that facilitates these cross-web-application lookups.

• When multiple web applications are operating in the normal way, each has a separate Tomcat session.
Tomcat tracks these sessions and expires the sessions independently for each web app. In a portal
environment where some web applications are not "visible" (i.e. not active), their sessions will expire.
There are two solutions to this problem (1) share a session across web applications or (2) have a heartbeat
which causes each web applications to "touch" their session to keep it from expiring. Sakai is using the
shared session across web applications initially using a tunneling approach pioneered by Jakarta Pluto and

Page 18

is investigating using the heartbeat approach in the future. Sakai is working with Tomcat, Pluto, uPortal,
and others to produce a standard mechanism to solve this problem.

The Sakai Java framework solves both of these problems so that the multiple web applications can operate together
as an application.

5.1 Sakai Component Manager

The Sakai Component manager is a set of software that uses Spring managed-bean capabilities to create and
maintain a component registry which maps API interfaces to the actual API implementations. This can be thought
of as a "domain name resolver" for API interfaces. This is similar to the OKI OSID loader that provides for the
lookup of implementations for a particular interface.

Tomcat

Component Manager

API Interface

component
webapp

tool
webapp

framework
webapp

tool
webapp

aggregator
webapp

…
API
Impl

API ObjectsComponent Registry
API Interface -> API Impl
API Interface -> API Impl

API
Call

API/Impl
Resolve

1

2

3

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

WEB-INF/lib
 jars

The tasks that must be performed for the Component Manager to operate include the following:

1. When a web application with components (implementations for a particular interface) starts up, a special
Servlet in the web application called the ComponentsServlet reads a configuration file and registers the
components contained within the Servlet.

2. When the tools (or other consumers of this API) are loaded, the ComponentManager locates the
implementation for their needed interfaces. The Component Manager uses the registry to find the pre-
registered implementations. There are several methods to perform this lookup including Service Injection
and Service Locator (described below).

3. The tool then makes calls to the API implementation across the web application boundary. Because the
API interface and objects returned by the API are defined in the shared space, the cross-web-application
call works fine. Because the tool and the API implementation operate in different web applications, they
can have different jar configurations. An example of this is where a tool needs one version of a utility such
as Xerxces while an API needs a different version of the Xerxces utilities.

While deploying application elements across several web applications causes some additional effort, the ability for
different elements to have different jar sets is highly valuable and helps to maintain the reliability of the overall
system.

In the 1.0 version of Sakai, you can dump out the Component Registry using the Component Servlet. Sample output
is shown below:

Sakai Component Manager

Page 19

Components
org.sakaiproject.service.framework.log.Logger -->
org.sakaiproject.component.framework.log.Jdk14Logger@1dae99
org.sakaiproject.service.legacy.calendar.CalendarService -->
org.sakaiproject.component.legacy.calendar.XmlFileCalendarService@8e54e8
org.sakaiproject.service.legacy.time.TimeService -->
org.sakaiproject.component.legacy.time.BasicTimeService@4e1c6f
org.sakaiproject.service.legacy.assignment.AssignmentService -->
org.sakaiproject.component.legacy.assignment.XmlFileAssignmentService@c5822c
org.sakaiproject.service.framework.portal.PortalService -->
org.sakaiproject.component.framework.portal.BasicPortalService@d8a1bf
org.sakaiproject.service.framework.current.CurrentService -->
…

5.2 Finding Sakai Service Implementations

There are two basic approaches to locating the implementation for a particular interface: Service Locator and
Service Injection. The Sakai Component Manager supports either service injection or service location as a
mechanism to resolve references to API implementations. The service injection pattern is preferred as it is more
portable.

5.2.1 Service Locator Pattern

The "Service Locator" pattern is where the tool makes an explicit call to retrieve the implementation for the
interface.

import org.sakaiproject.service.framework.component.cover.ComponentManager;

Logger logger = (Logger) ComponentManager.get(Logger);

This causes the code to actually depend on a particular component manager due to the explicit import statement
required and the method signature.

A common pattern when using the service locator pattern is to "hide" the service locator call using a "Cover
Pattern". The "cover" simply has a method for every method in the underlying interface - within each method, the
service locator is called, and then the method is called in the implementation returned by the service locator. In
Sakai code we use the string "cover" in the package name to indicate when this pattern is in use. This naming
convention helps keep static covers separate from interfaces, objects and interface implementations.

5.2.2 Service Injection Pattern

A more portable approach is to use a JavaBeans setter method to "inject" the implementing class. This is called the
"Service Injection" pattern, because the setter is used to "inject" the actual implementation of the interface after the
tool bean is constructed.

This way there is no dependency in the Java on the ComponentManager method signature or Java package name.

public void setLogger(Logger logger) {
this.logger = logger;

}

Page 20

In the Sakai Java Framework version 1.0, there are two ways to indicate that service injection is desired. When a
service needs to be injected with another service, the service injection is a side-effect of the creation of the service
bean. An example components.xml file is as follows:

<beans>
 <bean id="org.sakaiproject.service.common.id.IdManager"
 class="org.sakaiproject.component.common.id.SakaiIdManager"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 <property name="logger">
 <ref bean="org.sakaiproject.service.framework.log.Logger"/>
 </property>
 </bean>
</beans>

In this example, we are both creating and registering the IdManager bean and at the same time, injecting that bean
with the Logger implementation.

For a TPP-Compliant tool, the service injection is described in the faces-config.xml file:

<faces-config>
 <managed-bean>
 <description>Tool Bean for announcements</description>
 <managed-bean-name>AnnouncementTool</managed-bean-name>
 <managed-bean-class>
 org.sakaiproject.tool.annc.AnnouncementTool
 </managed-bean-class>
 <managed-property>
 <description>Service Dependency: logging service</description>
 <property-name>logger</property-name>
 <value>
 #{Components["org.sakaiproject.service.framework.log.Logger"]}
 </value>
 </managed-property>
 </managed-bean>
</faces-config>

Service injection allows the framework to have complete control over the implementations used at run-time by the
consuming Java code. In addition, using service injection simplifies the building of unit tests as the unit tests can
provide the code with a surrogate or stubbed implementation as part of the test operation.

The Sakai architecture team is investigating other possible mechanisms such as the Java Naming and Directory
Interface (JNDI) as a way to revolve API references across web application contexts.

Page 21

6 Aspects of the Sakai Java Framework

6.1 Hardware/Software Requirements

The Sakai software is intended to work on a wide range of hardware and operating systems that support Java. This
section will describe the typical environments used within the Sakai project for both the production and developer
environments.

Sakai developers typically use one of the following environments

Operating System: Windows-XP, Macintosh OS/X, Solaris, or Linux
Processor: PowerPC 800Mhz or higher, Pentium 2Ghz or higher
Memory: 512 MB or higher (1GB recommended)
Software: JAVA 1.4 or later and Jakarta Maven build environment
Optional software: Eclipse

The typical production environment:

Operating System: Linux or Solaris
Processor: Intel-Based
Memory: >= 4GB
Software: Java 1.4

Users are welcome to use other environments, but by sticking with the common environment used by the Sakai
developers and the production Sakai systems, it allows users to take advantage of the testing and QA that is done by
the developers and core institutions.

6.2 Sakai Target Environments

Sakai is intended to operate in a number of different environments ranging from a developer's desktop through a
scalable production environment.

The developer environment is designed to work without a network connection and is configured to store all data
either in flat files (for legacy services) or Hypersonic SQL (for newer capabilities). Hypersonic SQL will be
included in the release distribution to simplify startup.

Sakai

Flat
Files

HSQL
Database

Developer Environment

Sakai MySql
Database

Small Production
Environment

Page 22

It is a short step to move from the developer environment to a small production environment. The small production
environment is reconfigured so as to use a MySql database. This environment is intended for a relatively small
population of users (<200) but allows a small server to be set up using a single piece of hardware - perhaps a
commodity single-CPU system with 1GB+ of RAM. While backup and security are important issues, it is
conceivable that a clever instructor could set up their own Sakai system to support a single class or few research
groups.

For a medium sized institution with < 2000 users, a configuration with a single multi-processor application server
and separate MySql (or Oracle) database server is the expected configuration. This would likely be run in a
professionally managed central computing facility as an enterprise service.

Database
Server

Application
Server

Sakai
MySql

Database

Medium Sized Production
Environment

For a large production environment, it becomes necessary to cluster multiple application servers to provide the
necessary performance. The clustered version of Sakai depends on the Oracle database. It may be possible to
cluster using MySql or other database, but the all cluster testing and deployment is done with an Oracle
configuration.

Database
Server

Sakai

Oracle
Database

Large Production
Environment

Sakai

Sakai

Sakai

Application
Server Cluster

IP
 S

pr
ay

er

To use the clustered environment, the servers must be accessed through some type of IP sprayer that maintains
"sticky" sessions. When a user first associates with a particular application server their incoming requests must
always be routed back to the same service so that session information is maintained. Several options exist to solve
this problem ranging from dedicated hardware sprayers to specifically configured Apache servers.

Page 23

6.3 Sakai Internal Aggregator

When Sakai is operating as a stand-alone web application, it uses an internal aggregator to render the user view of
their pages. The internal aggregator is simply a template that assembles the different elements together for each user
request.

Login and Branding

Site Selection

Tool Selection

Tool Area

Presence

The internal aggregator template makes use of the following pieces of information:

• Whether or not the user is logged in - this is used to render the login and branding area.
• The list of subscribed sites for the user - this is used to populate the site selection area.
• Which site is currently selected - this is used to highlight the site in the site selection area and determines

the tools that are listed in the tool selection area.
• Which tool is selected - highlights the selected and determines what to place in the tool area.
• Presence - indicates which users are in the site at the same time - this is an optional feature which can be

enabled, depending on the desires and needs of the site.

The tool area is actually a panel that can contain a number of different tools. In the example shown above, there is a
single tool. In the "Home" tool, you will often see a number of tools (perhaps even two columns of tools) displayed
in synoptic views.

The template that renders the portal can be edited locally to change look and feel. In successive releases (post 1.0)
the rendering for the internal aggregator may change in significant ways. Users who customize this aspect of Sakai
should expect that any look-and-feel changes would require some porting effort as new releases come out.

6.4 Sakai and uPortal

There are a number of approaches in progress with respect to integrating Sakai into a variety of portals including
uPortal. WSRP and JSR-168 are two possible ways for this integration.

For 1.0 Sakai provides a simple mechanism to integrate into a portal:

• The Sakai internal aggregator will produce a reduced portal page that does not include the top frame
(branding, login, and logout).

• Both Sakai and the portal will use the same external single-on mechanism such as CAS
(http://www.yale.edu/tp/auth/cas20.html)

• The portal administrator adds a reference to the portal using an iFrame channel to Sakai that points at the
reduced portal page.

Page 24

This allows a seamless integration between a portal and Sakai. The top navigation, branding, log in and log out are
all handled by the portal.

iFrame
Channel

Sakai
Content

uPortal
branding
and login

In future releases of Sakai, there will be additional capabilities for portal integration that allow a finer grain of
access to sites.

The ultimate goal is to use the portal to provide end users the ability to assemble their own federated view across
many different Sakai servers.

Page 25

7 Conclusion

The Sakai Java framework provides capabilities to deploy tools and services in a collaborative learning
environment. There are a number of different levels of integration between a tool and the Sakai Java Framework.
The Sakai Tool Portability Profile provides a Sakai-specific unit of expansion that constrains developers but
produces tools with a very uniform look and feel and flexibility in rendering technologies. Sakai also provides a
mechanism to integrate tools that already exist without major re-write. In this integration, a tool adds a Servlet filter
and can then use the Sakai APIs to access Sakai information such as Agents, Authorizations, or other information.

By allowing multiple approaches developers can choose how to integrate their particular application into Sakai. So
far the pattern has been to build new small tools as TPP compliant tools (Sakai Syllabus Tool or Sakai Profile Tool)
while larger separately developed applications (The SAMigo assessment engine, Open Source Portfolio, and the
Berkeley Gradebook) have chosen to integrate as Java applications.

There is a clear understanding that the TPP capabilities present in the 1.0 release will need to evolve as the tools are
developed and new requirements are identified.

The Sakai Java Framework provides both a production environment and developer environment and is a blend of old
technologies with new and evolving technologies. Between releases 1.0, 2.0 and 3.0 there will be a shift in
emphasis from the legacy capabilities to the newer elements of the framework. The framework has been designed to
allow smooth transitions for a wide variety of applications into Sakai.

Page 26

8 List of Contributors

The following individuals contributed to the development of this document:

Craig Counterman Massachusetts Institute of Technology

Glenn Golden University of Michigan

Rachel Golub Stanford University

Mark Norton Sakai

Charles Severance University of Michigan

Lance Speelmon Indiana University

Page 27

9 Revision History

Version No. Release Date Comments

1.0 October 14, 2004 Developed from earlier documents for the Sakai 1.0 release.

1.0 October 24, 2004 Added diagram to the "Non-Java" section. Typos.

